## **Integrated Math B Honors**

## **Course Preparedness Profile & Expectations**

This course is designed for students who have mastered 7<sup>th</sup> grade standards, earning a "B" or higher in Math A Honors. Math B Honors is a challenging course, covering all Math B standards in greater depth and rigor and is intended for students who excel in math.

Below are some guidelines for choosing the best course for an individual student. This is *not* a placement test and it should *not* be used as the only criteria for making placement decisions.

## **Student Background**

Students entering **Integrated Math B Honors** should easily grasp higher level concepts and embrace rigorous curriculum. Students should *already* have mastered the following concepts:

- Analyze proportional relationships and use them to solve real world mathematical problems.
- Operations with positive and negative rational numbers.
- Approximate irrational by rational numbers.
- Use properties of operations to generate equivalent expressions.
- Solve real-life and mathematical problems using numerical and algebraic expressions and equations.
- Draw, construct and describe geometrical figures and describe the relationships between them.
- Solve real-life problems involving angle measure, area, surface area, and volume.
- Solve real-life problems involving volume of cylinders, cones, and spheres.
- Use random sampling to draw inferences about a population and draw informal comparative inferences about two populations.
- Investigate chance processes and develop, use, and evaluate probability models.

Students entering Integrated Math B Honors should also be able to solve problems such as

| Proportional Reasoning Problem                                                                                                                                                                                                                                                 | Numerical and Algebraic Equations                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tim makes 80 gallons of paint by mixing 48 gallons of green paint with 32 gallons of blue paint. What part of every gallon is from green paint?                                                                                                                                | Tom bought several appliances and a new car. He paid a sales tax of 7.5% on the appliances and a tax of 6.5% on the car. Before these taxes, the appliances and car together cost \$15,200. If he paid a total of \$1015 in taxes, how much did the car cost? |
| Given two dice, explain why P(rolling a 1, and then 6) =                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                               |
| $\frac{1}{36} \text{ but } P(\text{rolling a sum of 7}) = \frac{1}{6}$                                                                                                                                                                                                         |                                                                                                                                                                                                                                                               |
| Geometry Problem                                                                                                                                                                                                                                                               | Operations with Rational Expressions                                                                                                                                                                                                                          |
| The length of a rectangle is 10 m greater than twice its width. If the lengths were doubled and the widths were halved, the perimeter of the new rectangle would be 80 m more than the perimeter of the original rectangle. What are the dimensions of the original rectangle? | Alex claims that when ¼ is divided by a fraction, the result will always be greater than ¼.  A. Create an expression that supports Alex's claim  B. Create an expression that contradicts Alex's claim.                                                       |

## **Course Content and Expectations**

In **Integrated Math B Honors** students will go deeper into grade level standards. Student assignments will contain more critical thinking and have a higher depth of knowledge and more performance tasks. Students will learn concepts such as:

- Work with radicals and integer exponents
- Understand the connection between proportional relationships, lines, and linear equations.
- Solve linear equations as well as apply graphical and algebraic methods to analyze and solve systems of linear equations in two variables.
- Recognize equations for proportions as special linear equations and understand the relationship between the constant of proportionality and the slope.
- Use linear equations to describe the association between two quantities in bivariate data and to interpret components of the model (i.e. slope and y-intercept) in terms of the situation.
- Solve systems of equations and relate the systems to pairs of lines in the plane.
- Define, evaluate, and compare functions, and use them to model relationships among quantities.
- Understand how figures behave under translations, reflections, dilations, and rotations.
- Understand congruence and similarity to describe and analyze two-dimensional figures and to solve problems.
- Relates angles and similar triangles created when a transversal cuts parallel lines.
- Understand and apply the Pythagorean Theorem
- Solve real-world and mathematical problems involving volume of cylinders, cones, and spheres.

As in all math courses offered at SDUHSD, students are aware of and make use of all **Standards for Mathematical Practices:** 

- 1. Make sense of problems and persevere in solving them.
- 2. Reason abstractly and quantitatively.
- 3. Construct viable arguments and critique the reasoning of others.
- 4. Model with mathematics.
- 5. Use appropriate tools strategically.
- 6. Attend to precision.
- 7. Look for and make use of structure.
- 8. Look for and express regularity in repeated reasoning.

Grades will be calculated within the following guidelines:

Assessments: 70-80%Assignments: 20 – 30%

Students will be expected to work collaboratively as well as individually. On a regular basis, classes will include:

- Group problem solving followed by group presentations.
- Open ended problems that are applications of the content being covered.
- Challenge problems, which may consist of detailed diagrams and a single page write-up.